Abstract
Received signal strength (RSS) fingerprint-based indoor localization has received increasing popularity over the past decades. However, it suffers from the high calibration effort for fingerprint collection. In this paper, a C entralized indoo R localizatio N method using P seudo-label (CRNP) is proposed, which employs a small set of labeled data (RSS fingerprint) along with large volumes of unlabeled data (RSS values without coordinates) to reduce the workload of labeled data collection and improve the indoor localization performance. However, the rich location data is large in quantity and privacy sensitive, which may lead to high network cost (i.e., data transmission cost, data storage cost) and potential privacy leakage for data transmission to the central server. Therefore, a decentralized indoor localization method incorporating CRNP and federated learning is devised, which keeps the location data on local users’ devices and improves the shared CRNP model by aggregating users’ updates of the model. The experiment results demonstrate that (i) the proposed CRNP enables to improve the indoor localization accuracy by using unlabeled crowdsourced data; (ii) the designed decentralized scheme is robust to different data distribution and is capable to reduce the network cost and prevent users’ privacy leakage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.