Abstract

The results of ab initio calculations of the adiabatic potential energy surfaces for the proton-bound [FHF]- system at different F-F distances have been rationalized in the framework of the vibronic theory. It is shown that the instability of the symmetric D∞h structure at increased F∙∙∙F distances and the proton displacement to one of the fluorine atoms is due to the pseudo Jahn–Teller mixing of the ground 1Σg electronic state with the lowest excited state of 1Σu symmetry through the asymmetric σu vibrational mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.