Abstract

In this paper, we give an estimate of sub-Laplacian of Riemannian distance functions in pseudo-Hermitian geometry which plays a similar role as Laplacian comparison theorem in Riemannian geometry, and deduce a prior horizontal gradient estimate of pseudo-harmonic maps from pseudo-Hermitian manifolds to regular balls of Riemannian manifolds. As an application, Liouville theorem is established under the conditions of nonnegative pseudo-Hermitian Ricci curvature and vanishing pseudo-Hermitian torsion. Moreover, we obtain the existence of pseudo-harmonic maps from complete noncompact pseudo-Hermitian manifolds to regular balls of Riemannian manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.