Abstract
Recently, MR simulators gain popularity because of unnecessary radiation exposure of CT simulators being used in radiation therapy planning. We propose a method for pseudo CT estimation from MR images based on a patch-based random forest. Patient-specific anatomical features are extracted from the aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified using feature selection to train the random forest. The well-trained random forest is used to predict the pseudo CT of a new patient. This prediction technique was tested with human brain images and the prediction accuracy was assessed using the original CT images. Peak signal-to-noise ratio (PSNR) and feature similarity (FSIM) indexes were used to quantify the differences between the pseudo and original CT images. The experimental results showed the proposed method could accurately generate pseudo CT images from MR images. In summary, we have developed a new pseudo CT prediction method based on patch-based random forest, demonstrated its clinical feasibility, and validated its prediction accuracy. This pseudo CT prediction technique could be a useful tool for MRI-based radiation treatment planning and attenuation correction in a PET/MRI scanner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.