Abstract

We compute the spectra and elliptic flow of thermal photons emitted in ultrarelativistic heavy-ion collisions (URHICs) at RHIC and LHC. The thermal emission rates are taken from complete leading-order rates for the QGP and hadronic many-body calculations including baryons and antibaryons, as well as meson-exchange reactions (including Bremsstrahlung). We first update previous thermal fireball calculations by implementing a lattice-QCD based equation of state and extend them to compare to recent LHC data. We then scrutinize the space–time evolution of Au–Au collisions at RHIC by employing an ideal hydrodynamic model constrained by bulk- and multistrange-hadron spectra and elliptic flow, including a non-vanishing initial flow. We systematically compare the evolutions of temperature, radial flow, azimuthal anisotropy and four-volume, and exhibit the temperature profile of thermal photon radiation. Based on these insights, we put forward a scenario with a “pseudo-critical enhancement” of thermal emission rates, and investigate its impact on RHIC and LHC direct photon data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call