Abstract

We consider the diffeological pseudo-bundles of exterior algebras, and the Clifford action of the corresponding Clifford algebras, associated to a given finite-dimensional and locally trivial diffeological vector pseudo-bundle, as well as the behavior of the former three constructions (exterior algebra, Clifford action, Clifford algebra) under the diffeological gluing of pseudo-bundles. Despite these being our main object of interest, we dedicate significant attention to the issues of compatibility of pseudo-metrics, and the gluing-dual commutativity condition, that is, the condition ensuring that the dual of the result of gluing together two pseudo-bundles can equivalently be obtained by gluing together their duals, which is not automatic in the diffeological context. We show that, assuming that the dual of the gluing map, which itself does not have to be a diffeomorphism, on the total space is one, the commutativity condition is satisfied, via a natural map, which in addition turns out to be an isometry for the natural pseudo-metrics on the pseudo-bundles involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.