Abstract

Today, due to the unparalleled growth of multimedia data sharing, especially digital images, between users over insecure channels in real-time applications, cryptography algorithms have gained increasing attention for the secure and efficient transmission. In classical chaos-based image cryptosystems, the confusion and diffusion operations are often applied as two separate and independent phases, which threatens the cryptosystem security. To address these problems, in this paper, a fast image cryptosystem based on parallel simultaneous diffusion–confusion strategy has been proposed using Latin squares, called PSDCLS. It consists of three main steps. First, the initial parameters of the Hénon-Sine chaotic map are produced from SHA256 of both the plain image content and the user’s secret key. Second, a chaos-based random Latin square is constructed by employing the chaotic sequence produced through the Hénon-Sine chaotic map. Third, a parallel simultaneous diffusion–confusion scheme is proposed by using Latin square and vectorization technique to overcome the problems of computational complexity and high risk of separable and iterative confusion–diffusion operations in the classical chaos-based image cryptosystems. To analyze and evaluate the security and performance of PSDCLS cryptosystem, we conducted extensive simulations and experiments on various benchmark images. Experimental results and analyses show that PSDCLS achieves excellent scores for information entropy (>7.99), correlation coefficients close to 0, key space (2512), NPCR (>99.60%), UACI (>33.46%). The encryption time for test images of size 512 × 512 and 512×512×3 was around 0.026 and 0.081 s, respectively. Therefore, PSDCLS is highly robust against common cryptographic attacks and serves as a swift cryptosystem for real-time encryption applications. The source code of PSDCLS is accessible at: https://github.com/EbrahimZarei64/PSDCLS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.