Abstract

This paper presents an approach to mobile robot 6D localization based on a 3D laser scanner in GPS-denied scenarios. Commonly, 6D localization using laser scanners is performed with the use of extraction and association of the features or by comparison of the whole scans (very often off-line) using the ICP algorithm or its modifications. However, in some unstructured non-urbanized rough terrain environments, feature extraction does not seem to be reliable enough. For such kind of environment, we present a new method to mobile robot localization in GPS-denied applications, called PSD (Point-to-Surfel Distance). Unlike state of the art localization methods using laser scanners, we consider every single laser scanner measurement as an observation and use Point-to-Surfel Distance for correction of position and orientation of the robot. Mobile robot localization is based on a specific representation of the terrain in the 2.5D surfel map (terrain height and inclination). The simulation tests compared our method using extended Kalman filter (EKF) and single laser scanner measurements with an up-to-date method using particle filter (PF) and comparing the scan lines with the reference map and with another method using Gaussian mixture maps. The tests confirmed that the proposed method provides satisfying results for GPS-denied scenarios in rough terrain without extractable landmarks and our method is thirty times faster than the PF method (serial implementation). KITTI benchmark tests and real terrain experiments confirmed its usefulness and advantages as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call