Abstract

Characterization of protein subcellular localization has become an important and long-standing task in bioinformatics and computational biology, which provides valuable information for elucidating various cellular functions of proteins and guiding drug design. Here, we develop a novel bioimage-based computational approach, termed PScL-DDCFPred, to accurately predict protein subcellular localizations in human tissues. PScL-DDCFPred first extracts multiview image features, including global and local features, as base or pure features; next, it applies a new integrative feature selection method based on stepwise discriminant analysis and generalized discriminant analysis to identify the optimal feature sets from the extracted pure features; Finally, a classifier based on deep neural network (DNN) and deep-cascade forest (DCF) is established. Stringent 10-fold cross-validation tests on the new protein subcellular localization training dataset, constructed from the human protein atlas databank, illustrates that PScL-DDCFPred achieves a better performance than several existing state-of-the-art methods. Moreover, the independent test set further illustrates the generalization capability and superiority of PScL-DDCFPred over existing predictors. In-depth analysis shows that the excellent performance of PScL-DDCFPred can be attributed to three critical factors, namely the effective combination of the DNN and DCF models, complementarity of global and local features, and use of the optimal feature sets selected by the integrative feature selection algorithm. https://github.com/csbio-njust-edu/PScL-DDCFPred. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.