Abstract

The PsbM (3.9 kDa) and PsbY (4.2 kDa) proteins are membrane-spanning, single-helix, subunits associated with the chlorophyll-binding CP47 pre-complex of photosystem II (PSII). Removal of PsbM resulted in accumulation of PSII pre-assembly complexes and impaired electron transfer between the primary (QA) and secondary (QB) plastoquinone electron acceptors of PSII indicating that the QB-binding site and bicarbonate binding to the non-heme iron were altered in this strain. Removal of PsbY alone had only a minor impact on PSII activity but deleting PsbY in the ΔPsbM background led to additional modification of the acceptor side resulting in ΔPsbM:ΔPsbY cells being susceptible to photodamage and this required protein synthesis for recovery. Addition of bicarbonate was able to compensate for the light-induced damage in ΔPsbM:ΔPsbY cells potentially re-occupying the modified bicarbonate-binding site in the ΔPsbM:ΔPsbY strain and complementation of ΔPsbM:ΔPsbY cells with the psbY gene restored the ΔPsbM phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call