Abstract

Plants acclimate to fluctuations in light conditions by adjusting their photosynthetic apparatus. When the light intensity exceeds, an unbalanced excitation of the two photosystems occurs. It results in reduced photosynthetic efficiency. Photosystem II (PSII) is the most susceptible and dynamically regulated part of the light reactions in the thylakoid membrane. Non-photochemical quenching of chlorophyll fluorescence (NPQ) is one of the short-term photoprotective mechanisms, which consist of the number of components. The strongest NPQ component — qE is localized in the PSII antenna and induced in plants by lumen acidification, the activation of the pH sensor PsbS, and the conversion of the violaxanthin to zeaxanthin within the xanthophyll cycle. Here, I present data that characterizes the role of the PsbS protein in organization of PSII structural components in isolated PSII-enriched membranes. The preparations were isolated from wild-type (WT) and PsbS-less (PsbS-KO) mutant rice plant. Based on the obtained results, the PSII-enriched membranes from WT and PsbS-KO differ as in the level of lipids, also in carotenoids. I conclude that the PsbS-dependent changes in membrane fluidity in PsbS-KO mutant plants compensated with increased lipid level in mutant plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call