Abstract
BackgroundHow can we obtain fast and high-quality clusters in genome scale bio-networks? Graph clustering is a powerful tool applied on bio-networks to solve various biological problems such as protein complexes detection, disease module detection, and gene function prediction. Especially, MCL (Markov Clustering) has been spotlighted due to its superior performance on bio-networks. MCL, however, is skewed towards finding a large number of very small clusters (size 1-3) and fails to detect many larger clusters (size 10+). To resolve this fragmentation problem, MLR-MCL (Multi-level Regularized MCL) has been developed. MLR-MCL still suffers from the fragmentation and, in cases, unrealistically large clusters are generated.ResultsIn this paper, we propose PS-MCL (Parallel Shotgun Coarsened MCL), a parallel graph clustering method outperforming MLR-MCL in terms of running time and cluster quality. PS-MCL adopts an efficient coarsening scheme, called SC (Shotgun Coarsening), to improve graph coarsening in MLR-MCL. SC allows merging multiple nodes at a time, which leads to improvement in quality, time and space usage. Also, PS-MCL parallelizes main operations used in MLR-MCL which includes matrix multiplication.ConclusionsExperiments show that PS-MCL dramatically alleviates the fragmentation problem, and outperforms MLR-MCL in quality and running time. We also show that the running time of PS-MCL is effectively reduced with parallelization.
Highlights
How can we obtain fast and high-quality clusters in genome scale bio-networks? Graph clustering is a powerful tool applied on bio-networks to solve various biological problems such as protein complexes detection, disease module detection, and gene function prediction
Experiments show that PS-Markov clustering (MCL) dramatically alleviates the fragmentation problem, and outperforms Multi-level R-MCL (MLR-MCL) in quality and running time
We show that the running time of Parallel shotgun coarsening MCL (PS-MCL) is effectively reduced with parallelization
Summary
We propose PS-MCL (Parallel Shotgun Coarsened MCL), a parallel graph clustering method outperforming MLR-MCL in terms of running time and cluster quality. PS-MCL adopts an efficient coarsening scheme, called SC (Shotgun Coarsening), to improve graph coarsening in MLR-MCL. SC allows merging multiple nodes at a time, which leads to improvement in quality, time and space usage. PS-MCL parallelizes main operations used in MLR-MCL which includes matrix multiplication
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.