Abstract

Antibiotic therapy can induce the generation of severe bacterial resistance, further challenging the usability of currently available drugs and treatment options. Therefore, it is essential to develop new strategies to effectively eradicate drug-resistant bacteria. Herein, we have reported a combinational strategy for the eradication of drug-resistant bacteria by using chlorin e6 (Ce6) loaded Prussian blue nanoparticles (PB NPs). This nanocomplex showed strong catalase activity and photodynamic properties. In vitro experiments demonstrated that CPB-Ce6 NPs effectively kill MRSA by generating ROS under laser irradiation. Meanwhile, the nano-enzyme activity of CPB NPs can decompose H2O2 in the bacterial microenvironment to upregulate the O2 level, which in turn alleviates hypoxia in the microenvironment and improves the antibacterial effect of PDT. In vivo results demonstrated that CPB-Ce6 NPs with laser irradiation effectively cleared MRSA and promoted infected wound repair in a diabetic mouse model and normal mice through upregulating VEGF. Moreover, CPB-Ce6 NPs showed excellent biosafety profiles in vitro and in vivo. From our point of view, this PDT based on PB NPs with nano-enzyme activity may provide an effective treatment for infections associated with drug-resistant microbes and tissue repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.