Abstract

We report the production and characterization of effective amperometric sensors for cathodic hydrogen peroxide (H2O2) detection. The proposed electrodes involve a combination of a H2O2-signaling Prussian Blue (PB)/carbon nanotube (CNT) layer with a glaze of the biopolymers gelatin (top) and zein (beneath) for protection against PB leakage. The sandwich-type sensor was constructed through simple "drop and dry" steps with (1) suspensions of the CNTs in a soluble PB solution, (2) zein in ethanol, and (3) gelatin in water, applied sequentially to the carbon working electrode disk of a screen-printed carbon electrode (SPCE) platform. The PB in the signaling layer acted as the electrocatalyst for H2O2 reduction at -150 mV vs Ag/AgCl/3 M KCl, enabling cathodic H2O2 amperometry with good target proportionality. Calibration trials confirmed the linearity of the response up to 700 μM (R2 > 0.998), with a sensitivity of 0.425 μA μM-1 cm-2 and a practical detection limit of 1 μM. Quantification of H2O2 in model and real samples with gelatin-zein-PB/CNT-SPCEs had a recovery of close to 100% of the true value. Since they are easily and cheaply made and yield accurate target assessments, gelatin-zein-PB/CNT-SPCEs are an ideal tool for electrochemical H2O2 analyses in human body fluids, health care products, and samples from industries that use H2O2 as a bleach and germicide. Workers with little experience in sensor fabrication and limited funding will particularly benefit from utilization of the proposed H2O2 probes, which as well as being used in H2O2 testing also have a potential application as the transducer unit of oxidase-based biosensors with amperometric H2O2 readout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.