Abstract

AbstractPrussian blue analogues (PBAs) have been regarded as promising cathode materials for alkali‐ion batteries owing to their high theoretical energy density and low cost. However, the high water and vacancy content of PBAs lower their energy density and bring safety issues, impeding their large‐scale application. Herein, a facile “potassium‐ions assisted” strategy is proposed to synthesize highly crystallized PBAs. By manipulating the dominant crystal plane and suppressing vacancies, the as‐prepared PBAs exhibit increased redox potential resulting in high energy density up to ≈450 Wh kg−1, which is at the same level of the well‐known LiFePO4 cathodes for lithium‐ion batteries. Remarkably, unconventional highly‐reversible phase evolution and redox‐active pairs were identified by multiple in situ techniques for the first time. The preferred guest‐ion storage sites and migration mechanism were systematically analysed through theoretical calculations. We believe these results could inspire the design of safe with high energy density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.