Abstract

Pruning is an effective technique to reduce computational complexity of Convolutional Neural Networks (CNNs) by removing redundant neurons (or weights). There are two types of pruning methods: holistic pruning and layer-wise pruning. The former selects the least important neuron from the entire model and prunes it. The latter conducts pruning layer by layer. Recently, it has turned out that some layer-wise methods are effective for reducing computational complexity of pruned models while preserving their accuracy. The difficulty of layer-wise pruning is how to adjust pruning ratio (the ratio of neurons to be pruned) in each layer. Because CNNs typically have lots of layers composed of lots of neurons, it is inefficient to tune pruning ratios by human hands. In this paper, we present Pruning Ratio Optimizer (PRO), a method that can be combined with layer-wise pruning methods for optimizing pruning ratios. The idea of PRO is to adjust pruning ratios based on how much pruning in each layer has an impact on the outputs in the final layer. In the experiments, we could verify the effectiveness of PRO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.