Abstract

Principal fitted component (PFC) models are a class of likelihood-based inverse regression methods that yield a so-called sufficient reduction of the random p-vector of predictors X given the response Y. Assuming that a large number of the predictors has no information about Y, we aimed to obtain an estimate of the sufficient reduction that ‘purges’ these irrelevant predictors, and thus, select the most useful ones. We devised a procedure using observed significance values from the univariate fittings to yield a sparse PFC, a purged estimate of the sufficient reduction. The performance of the method is compared to that of penalized forward linear regression models for variable selection in high-dimensional settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.