Abstract

Prunella vulgaris L. (Lamiaceae) (PV) is a herbaceous plant traditionally utilized in management of diabetes and it has immunomodulatory activity. In this study, acute and subchronic antidiabetic, in-vivo antioxidant and antinociceptive effects of PV were evaluated in alloxan-induced type 1 diabetes (T1D) in a mouse model. Bio-guided fractionation, isolation, RP-HPLC, and 1H and 13C NMR identification of the active components responsible for PV effects were determined. RP-HPLC analysis showed that PV contained rosmarinic acid (RA) 4.5%, caffeic acid (CA) 9.8% and p-coumaric acid (pCA) 11.6%. Bio-guided fractionation showed that PV most active fraction was rich in caffeic acid, hence named, caffeic acid-rich fraction (CARF). RP-HPLC, and 1H and 13C NMR experiments showed that CARF contained CA (93.4%) and RA (6.6%). CARF reduced blood glucose levels and improved in-vivo oxidative-stress. It also inhibited the carbohydrate-hydrolyzing enzymes (alpha-amylase and alpha-glucosidase) and reduced HbA1c levels more significantly (p≤0.05) than that of PV and equivalent amounts of CA or RA. For longer times, CARF had significantly (p≤0.05) increased serum-insulin, ameliorated thermal hyperalgesia and tactile allodynia more significantly (p≤0.05) than the effects of PV and equivalent amounts of CA or RA. Moreover, the tested compounds showed potential restoration of the lipid peroxide levels. Consequently, CARF and PV observed increase in serum-insulin, attenuation of alpha-amylase and alpha-glucosidase, and their antioxidant potentials might be responsible for their antidiabetogenic and antinociceptive properties. In conclusion, CARF isolated from PV could be a potential therapeutic agent to ameliorate T1D and related complications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.