Abstract

The Internet of Things (IoT) drives the world towards an always connected paradigm by interconnecting wide ranges of network devices irrespective of their resource capabilities and local networks. This would inevitably enhance the requirements of constructing dynamic and secure end-to-end (E2E)connections among the heterogenous network devices with imbalanced resource profiles and less or no previous knowledge about each other. The device constraints and the dynamic link creations make it challenging to use pre-shared keys for every secure E2E communication scenario in IoT. We propose a proxy-based key establishment protocol for the IoT, which enables any two unknown high resource constrained devices to initiate secure E2E communication. The high constrained devices should be legitimate and maintain secured connections with the neighbouring less constrained devices in the local networks, in which they are deployed. The less constrained devices are performing as the proxies and collaboratively advocate the expensive cryptographic operations during the session key computation. Finally, we demonstrate the applicability of our solution in constrained IoT devices by providing performance and security analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call