Abstract

Deep convolutional networks have been extensively deployed in hyperspectral image (HSI) classification. Reaching for high accuracy, the existing deep-learning-based methods commonly deepen or widen their networks for better performance, which brings higher computational complexity and the risk of overfitting. Although the introduction of the residual module and batch-normalization reduces the generalization degradation in complex networks, the mainstream methods still suffer from low robustness to the noise. To tackle these issues, a compact proxy-based deep learning framework is proposed to perform highly accurate HSI classification with superb efficiency and robustness. In this article: 1) novel deep proxies are integrated to replace the dense classifier layers in conventional networks, which represents specific classes in deep embedding space and enables fast and reliable convergence; 2) the proxy-based feature embedding is studied in distance metric and similarity metric, and compatible dual-metric loss functions are designed for further optimized embedding distribution, which leads to more robust generalization; and 3) state-of-the-art performance and robustness are demonstrated by the proposed framework on mainstream HSI data sets with the minimal network scale and time complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.