Abstract

Magnetic multilayers with heavy metal/ferromagnetic interfaces play an important role in data storage and spintronics due to magnetic phenomena such as perpendicular magnetic anisotropy (PMA) and magnetic skyrmion stabilization. Properties such as saturation magnetization (Ms), PMA, and interfacial Dzyaloshinskii–Moriya interaction (iDMI) can be tuned by stacking engineering to tailor the multilayer magnetic ground state. Here, it is demonstrated that isolated skyrmion bubbles can be stabilized at zero magnetic field in nominally symmetric Pt/Co/Pt multilayers grown by magnetron sputtering. Interface disorder and asymmetry are strongly enhanced as the Co layer is thinned, leading to nonzero iDMI and Pt proximity induced moment (PIM) that affects both the multilayer Ms and PMA. The interplay between PIM and the iDMI is behind the nucleation of skyrmion bubbles, highlighting the importance of controlling the interface phenomena to develop devices for future applications. These results also manifest the importance of considering the PIM to determine the correct magnetic parameters of ultrathin films on the zero-field spin textures stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.