Abstract

Gate-tunable spin-dependent properties could be induced in graphene at room temperature through magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene. We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to the Fermi level. In the \Co/\Pt/\Gr system the proximity-induced spin polarization in graphene and its gate control are strongly enhanced by the presence of a surface band near the Fermi level. Furthermore, the shift of the Dirac point could be eliminated entirely by selecting submonolayer coverage in the passivation layer. Our findings open a path towards experimental realization of an optimized two-dimensional system with gate-tunable spin-dependent properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call