Abstract

Circulating tumor DNA (ctDNA) is regarded as an ideal candidate biomarker for the non-invasive diagnosis of cancer. However, the lack of convenient and reliable detection methods for ctDNA restricts its clinical application. Herein, we developed a dual signal amplification strategy for sensitive detection of ctDNA based on hybridization chain reaction (HCR) and proximity hybridization-regulated CRISPR/Cas12a. The ctDNA initiates HCR through the continuous hybridization of two hairpin probes (H1 and H2), yielding long nicked double-stranded DNA nanowires composed of numerous split segments, which are successively connected to activate the trans-cleavage activity of CRISPR/Cas12a. In this case, the doubly labeled single-stranded DNA reporter can be cleaved to produce a strong fluorescent signal. Owing to the dual amplification of HCR and CRISPR/Cas12a, this strategy exhibits high sensitivity toward ctDNA with a low detection limit of 5.43 fM. Moreover, the proposed method was successfully applied for ctDNA detection in serum samples with satisfactory results, which has great potential in the clinical diagnosis of cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.