Abstract

Sensitive and accurate determination of estriol level is vastly significant for the fetal growth and development. Herein, we constructed a dual-mode ratiometric biosensor for estriol assay combining the competitive immunoreaction, proximity hybridization with a two-step resonance energy transfer (RET) strategy. Estriol antibody and goat anti-rabbit antibody labeled DNA probes (Ab1-DNA1-Pt NPs and Ab2-DNA2) both hybridized with silver nanoclusters labeled DNA strands (H1-Ag NCs). Thus, the formed proximity hybridization enabled the occurrence of fluorescence RET (FL-RET, as the primary RET) between Ag NCs (donor) and Pt NPs (acceptor), quenching FL intensity of Ag NCs (FL off). When target estriol existed, the competitive reaction of Ab1-DNA1-Pt NPs with estriol and Ab2-DNA2 avoided the proximity hybridization. Then, the estriol-dependent H1-Ag NCs quenched electrochemiluminescence (ECL) emission of CdS quantum dots (CdS QDs, ECL off), generating ECL-RET (as the second RET). Consequently, according to the reverse changes of FL and ECL responses, this sensor realized the quantification of estriol from 1 to 100 ng/mL. Moreover, satisfactory results were achieved while testing estriol in pregnancy serum specimens, suggesting that the system is promising for potential application in samples analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.