Abstract

A new technique is described for manufacturing silicon wafers with the highest capability yet reported for gettering transition metallic, oxygen, and hydrogen impurities in CMOS image sensor fabrication. It is demonstrated that this technique can implant wafers simultaneously with carbon and hydrogen elements that form the projection range by using hydrocarbon compounds. Furthermore, these wafers can getter oxygen impurities out-diffused from the silicon substrate to the carbon cluster ion projection range during heat treatment. Therefore, they can reduce the formation of transition metals and oxygen-related defects in the device active regions and improve electrical performance characteristics, such as dark current and image lag characteristics. The new technique enables the formation of high-gettering-capability sinks for transition metals, oxygen, and hydrogen impurities under device active regions of CMOS image sensors. The wafers formed by this technique have the potential to significantly reduce dark current in advanced CMOS image sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.