Abstract
The proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet--$d$-wave-superconductor junctions with {110}-oriented interface are studied by solving self-consistently the Bogoliubov--de Gennes equations within an extended Hubbard model. It is found that the proximity induced order parameter oscillates in the ferromagnetic region. The modulation period is shortened with the increased exchange field while the oscillation amplitude is depressed by the interfacial scattering. With the determined superconducting energy gap, a transfer matrix method is proposed to compute the subgap conductance within a scattering approach. Many interesting features including the zero-bias conductance dip and splitting are exhibited with appropriate values of the exchange field and interfacial scattering strength. The conductance spectrum can be influenced seriously by the spin-flip interfacial scattering. In addition, a sizable local magnetic moment near the {110}-oriented surface of the d-wave superconductor is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.