Abstract

We show that narrow superconducting strips in superconducting (S) and normal (N) states are universally described by the model presenting them as lateral NSN proximity systems in which the superconducting central band is sandwiched between damaged edge-bands with suppressed superconductivity.The width of the superconducting band was experimentally determined from the value of magnetic field at which the band transits from the Meissner state to the static vortex state. Systematic experimental study of 4.9 nm thick NbN strips with widths in the interval from 50 nm to 20 ${\mu}$m, which are all smaller than the Pearl's length, demonstrates gradual evolution of the temperature dependence of the critical current with the change of the strip width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.