Abstract

The analysis of different layers of proximity effect in ortho-substituted aromatic compounds, using a DFT-level study, is reported. Polar and steric components of the proximity effect have been partitioned by applying multivariate regression analysis to an unusual six-electron heteroelectrocyclic reaction of the ortho-substituted nitrosostyrenes. The two pathways, 1,5- and 1,6-cyclizations, emanating from these substrates result into zwitterionic five-membered and neutral six-membered rings, respectively. The substituents at position 1, which are adjacent to the polar nitroso group, influenced the barrier primarily through electronic effect. Furthermore, a mechanistic shift from the 1,5 to 1,6 pathway, for certain substrates, is explained by the electronic repulsion. In contrast to position 1, the substituents on position 4 stereoelectronically interacted with a bulkier alkene moiety. Furthermore, unlike position 1, the position-4-substituted substrates are predicted to give only 1,5 products. A comparison of the two ortho positions with position 2, which is meta to the nitroso and para to the alkene, revealed an intriguing relationship between various electronic factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.