Abstract

When an object approaches a vibrating quartz crystal microbalance (QCM) the resonant frequency changes. This "proximity effect" was seen at the distance of 10 mm in air and became more pronounced as the distance decreased. This effect depends on the quality factor (Q-factor) value of a QCM, conductivity of the object, and electrical connection of the object to QCM electrodes. A special setup was constructed to test the impact of the proximity effect on a QCM. Damping fluid was placed on one side of QCM, to change the Q-factor. A conducting metal disk was brought close to the other side of the QCM exposed to air. By varying the distance between the QCM and an object (metal disk), a shift in frequency was observed. This proximity effect was largest (>200 Hz for 10 MHz QCM) when the Q-factor was low and a conducting metal disk (e.g., Cu) was electrically shorted to the proximal (nearest) QCM electrode. The finite element modeling showed that the proximity effect was likely due to interaction of the object with the fringing electromagnetic field of the QCM. A simple modified Butterworth Van-Dyke model was used to describe this effect. It must be recognized that this effect may lead to large experimental artifacts in a variety of analytical QCM applications where the Q-factor changes. Therefore, in order to avoid artifacts, QCM and similar mass acoustic devices should not operate in the low Q-factor (<1000) regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.