Abstract
Recently, the interest in enhancement of critical dimension (CD) accuracy has been significantly increased to satisfy requirements of sub 100nm devices. Proximity effect correction becomes an indispensable choice to improve CD accuracy within local area, and fogging and loading effects compensation has been tried to enhance global CD uniformity. However, proximity effect correction (PEC) parameters obtained without considering additional exposure such as fogging effect and the exposure to compensate it are not appropriate to fabricate real devices. In this paper, we investigated the relation of PEC parameters and various pattern densities and additional exposure experientially, analyzed theoretically using the edge image model to describe absorbed energy. Through evaluations, we could optimize proximity effect correction parameters for EBM-3500 taking additional exposure into account, and realize higher CD accuracy in mask fabrication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.