Abstract
In a deterministic world, a planning agent can be certain of the consequences of its planned sequence of actions. Not so, however, in dynamic, stochastic domains where Markov decision processes are commonly used. Unfortunately these suffer from the `curse of dimensionality': if the state space is a Cartesian product of many small sets (`dimensions'), planning is exponential in the number of those dimensions. Our new technique exploits the intuitive strategy of selectively ignoring various dimensions in different parts of the state space. The resulting non-uniformity has strong implications, since the approximation is no longer Markovian, requiring the use of a modified planner. We also use a spatial and temporal proximity measure, which responds to continued planning as well as movement of the agent through the state space, to dynamically adapt the abstraction as planning progresses. We present qualitative and quantitative results across a range of experimental domains showing that an agent exploiting this novel approximation method successfully finds solutions to the planning problem using much less than the full state space. We assess and analyse the features of domains which our method can exploit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.