Abstract

This paper deals with linear integer optimization. We develop a technique that can be applied to provide improved upper bounds for two important questions in linear integer optimization. Given an optimal vertex solution for the linear relaxation, how far away is the nearest optimal integer solution (if one exists; proximity bounds)? If a polyhedron contains no integer point, what is the smallest number of integer parallel hyperplanes defined by an integral, nonzero, normal vector that intersect the polyhedron (flatness bounds)? This paper presents a link between these two questions by refining a proof technique that has been recently introduced by the authors. A key technical lemma underlying our technique concerns the areas of certain convex polygons in the plane; if a polygon [Formula: see text] satisfies [Formula: see text], where τ denotes [Formula: see text] counterclockwise rotation and [Formula: see text] denotes the polar of K, then the area of [Formula: see text] is at least three. Funding: J. Paat was supported by the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2021-02475]. R. Weismantel was supported by the Einstein Stiftung Berlin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.