Abstract

Calcareous couplets are key elements in reconstructing the evolution of a sedimentary basin due to the influence of forcing mechanisms such as climate, sea level and tectonism on their depositional patterns. Proposed forcing mechanisms, however, are often not mutually exclusive and even constraining the relative importance of different processes is problematic. Added to the question of discriminating forcing mechanisms, a major challenge is to produce high-sampling density so that observations lie within temporal resolutions equal to or finer than the timescales on which different forcing operates. Here, we show fine-scale (1 sample/~2cm) CaCO3, δ18O and δ13C records and sedimentological observations from three different sites (Isla de Castro, Sopelana-Ma, and Sopelana-Da) with calcareous couplets in the Basque Cantabrian Basin (eastern North Atlantic) to illustrate the potential of fine-sampling strategies to help distinguish proximate environmental forcing. Partial redistribution of carbonate during burial diagenesis has been proposed for these sediments. Our CaCO3, δ18O and δ13C data could thus be dismissed as diagenetic signals if only one sample was collected from each bed. Detailed observations of the fine-scale geochemical records, however, challenge purely diagenetic explanations. Combined with sedimentology, the CaCO3, δ18O and δ13C values, partially altered by diagenesis, are interpreted to have resulted from alternating climates. The proximate forcing through which alternating climates caused the geochemical patterns, though, was different in each section, due to their specific palaeogeographic positions in the basin and the properties of the seawater masses. The proximity of continental areas of high relief to the Isla de Castro section supported a high continental influence during its deposition. The Sopelana-Ma sediments are assigned to a transgressive system tract, a condition that is interpreted to have promoted a high influence of oceanic processes in its depositional setting. Finally, a relatively cool, oxygen-rich water mass with high oxidation potential influenced the geochemical and depositional patterns of Sopelana-Da. Beyond the climatic and oceanographic dynamics inferred for a basin that linked the western Tethys with Boreal domains during major marine transgressions of the Late Cretaceous to Palaeocene, an implication of our work is that if similar fine-scale geochemical records were applied to calcareous couplets spanning major events in Earth's history (e.g., ocean anoxic events), alternative forcing scenarios leading to and out of these events could be discriminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call