Abstract

The chemical profiles of Desmapsamma anchorata, Hymeniacidon heliophila (Porifera), Bunodosoma caissarum, Renilla muelleri (Cnidaria), Aplysia brasiliana, Eledone massyae, Isognomon bicolor (Mollusca), Echinaster brasiliensis, Echinometra lucunter, Holothuria grisea, Lytechinus variegatus (Echinodermata), and Phallusia nigra (Chordata) were determined. Hydrosoluble protein was the most abundant class of substances for all species, except for the ascidian Phallusia nigra, in which the carbohydrate content was higher. The percentages of hydrosoluble protein (dry weight, dw) varied widely among the invertebrates, ranging from 5.88% (R. muelleri) to 47.6% (Eledone massyae) of the dw .The carbohydrate content fluctuated from 1.3% (R. muelleri) to 18.4% (Aplysia brasiliana) of the dw. For most of the species, lipid was the second most abundant class of substances, varying from 2.8% (R. muelleri) to 25.3% (Echinaster brasiliensis) of the dw. Wide variations were also found for the invertebrates nitrogen content, with the lowest value recorded in the cnidarian R. muelleri (2.02% of the dw) and the highest in the molluscan E. massyae (12.7% of the dw). The phosphorus content of the dw varyed from 0.24% (R. muelleri) to 1.16% (E. massyae). The amino acid composition varied largely among the species, but for most of the species glycine, arginine, glutamic acid, and aspartic acid were the most abundant amino acids, with histidine and tyrosine among the less abundant amino acids. The actual content of total protein in the samples was calculated by the sum of amino acid residues, establishing dw values that fluctuated from 11.1% (R. muelleri) to 66.7% (E. massyae). The proteinaceous nitrogen content was high in all species, with an average value of 97.3% of the total nitrogen. From data of total amino acid residues and total nitrogen, specific nitrogen-to-protein conversion factors were calculated for each species. The nitrogen-to-protein conversion factors ranged from 5.10 to 6.15, with an overall average of 5.45. The use of the specific nitrogen-to-protein conversion factors established here is recommended, since it would yield more accurate determinations of total protein in the species tested in this study.

Highlights

  • Marine invertebrates involve a huge assemblage of animal lineages of high taxa

  • The actual content of total protein in the samples was calculated by the sum of amino acid residues, establishing dw values that fluctuated from 11.1% (R. muelleri) to 66.7% (E. massyae)

  • A significant difference in P concentrations was found for the cnidarians (P < 0.001), with higher concentration recorded in the anemone B. caissarum (1.0% dw) in comparison to R. muelleri (0.24% dw)

Read more

Summary

Introduction

Marine invertebrates involve a huge assemblage of animal lineages of high taxa. They represent the core of the known marine biodiversity, since the number of species of benthic invertebrates is the highest among all organisms in the sea, according to the results gathered by the Census of Marine Life (Costello et al, 2010). Studies on the chemical composition of marine organisms are still scarce, compared to other traditional fields, such as ecology, biogeography, effects of pollution, and conservation of species (e.g., Barbeitos et al, 2010; O'Dor et al, 2010; McCall & Pennings, 2012), among others. Invertebrates have been studied in the context of bioprospection of natural products, a search for bioactive molecules that can be used in pharmaceuticals and in potential biotechnological applications (e.g., Faulkner, 1984; Haygood et al, 1999; Haefner, 2003; Newman & Cragg, 2004; Leal et al, 2012; Yang et al, 2013)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call