Abstract

The current methods of distal humerus (DH) articular surface visualization only allow a limited view of the joint. This study describes an osteotomy procedure that increases the visualization of and access to the DH articular surface for fixation without compromising ligaments. Eighteen fresh-frozen human elbows (9 matched pairs) underwent proximal ulna osteotomy (PUO) or transverse olecranon osteotomy (OO) contralaterally. The visualized articular surface of the DH was demarcated, and the surface areas of the DH, capitellum, and trochlea were measured using 3-dimensional scanning. The angular arc of the articular surface of the capitellum and trochlea was measured using a goniometer. The 3-dimensional scans showed that 87.6% of the total DH surface area was visualized using PUO versus 65.6% using OO. When the trochlea and capitellum surface areas were separated, 94.0% versus 75.9% of the trochlea and 74.8% versus 44.7% of the capitellum were visualized using PUO and OO, respectively. The goniometric angles demonstrated that 98.2% versus 70.9% of the trochlea and 75.1% versus 43.5% of the capitellum articular surface arc angles were visualized using PUO and OO, respectively. After PUO with further release of the flexor-pronator mass was performed, 100% of the DH articular surface was visualized. Proximal ulnar osteotomy improves the visualization of the DH articular surface. Proximal ulna osteotomy spares ligaments, avoids osteotomizing the greater sigmoid notch, involves more robust metaphyseal bone for potentially better fixation, and may permit DH arthroplasty without compromising primary ligamentous elbow stabilizers. Further clinical studies are needed to assess the utility of this type of osteotomy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call