Abstract

The mechanism of tubular acidification was studied in proximal tubular acidification defect induced in rats by acute parenteral infusion of maleate (200 mg/kg), which causes diuresis and bicarbonaturia. Proximal tubular bicarbonate reabsorption and H+ ion secretion were determined by stopped-flow microperfusion and measurement of luminal pH by Sb microelectrodes. Stationary pH increased in proximal tubule from 6.78 to 7.25 and bicarbonate reabsorption decreased from 1.32 to 0.51 nmol/cm2 X s. In these segments, mean cell PD fell from -66.6 to -20.2 mV, while Jv as estimated by the Gertz technique fell to 15% of controls. A similar impairment of acidification was observed during luminal and capillary perfusion with phosphate Ringer's. Since H+-ion efflux from the lumen was not significantly increased and both acidification and alkalinization half-times (t/2) were increased, no evidence for an increase in passive permeability for H+/HCO3- was obtained. The increased t/2 found during luminal perfusion with acid phosphate indicates, according to an electrical analog model, a reduction in pump series conductance. These results show that maleate affects both proximal Na+ and H+ transport; this effect may be ascribed to impairment of sodium-dependent transport systems in the brush-border membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.