Abstract

Injury to the ACL significantly increases the risk of developing post-traumatic osteoarthritis. Following injury, considerable focus is placed on visualizing soft tissue changes using MRI, but there is less emphasis on the alterations to the underlying bone. It has recently been shown using high-resolution peripheral quantitative computed tomography (HR-pQCT) that significant reductions in bone quality occur in the knee post ACL-injury. Despite the ability of HR-pQCT to show these changes, the availability of scanners and computational time requirements required to assess bone stiffness and strength with HR-pQCT limit its widespread clinical use. As such, the objective of this study was to determine if clinical quantitative CT (QCT) finite element models (QCT-FEMs) can accurately replicate HR-pQCT FEM proximal tibial stiffness and strength. From FEMs of 30 participants who underwent both QCT and HR-pQCT bilateral imaging, QCT-FEMs were strongly correlated with HR-pQCT FEM stiffness (R2 = 0.79). When QCT-FEM bone strength was estimated using the reaction force at 1% apparent strain, strong correlations were observed (R2 = 0.81), with no bias between HR-pQCT FEMs and non-linear QCT-FEMs. These results indicate that QCT-FEMs can accurately replicate HR-pQCT FEM stiffness and strength in the proximal tibia. Although these models are not able to replicate the trabecular structure or tissue-level strains, they require significantly reduced computational time and use widely available clinical-CT images as input, which make them an attractive choice to monitor bone density, stiffness and strength alterations, such as those that occur post ACL-injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call