Abstract
Abstract This paper presents an intelligent diagnosis technique for wind turbine imbalance fault identification based on generator current signals. For this aim, Proximal Support Vector (PSVM), which is powerful algorithm for classification problems that needs small training time in solving nonlinear problems and applicable to high dimension applications, is employed. The complete dynamics of a permanent magnet synchronous generator (PMSG) based wind-turbine (WTG) model are imitated in an amalgamated domain of Simulink, FAST and TurbSim under six distinct conditions, i.e., aerodynamic asymmetry, rotor furl imbalance, tail furl imbalance, blade imbalance, nacelle-yaw imbalance and normal operating scenarios. The simulation results in time domain of the PMSG stator current are decomposed into the Intrinsic Mode Functions (IMFs) using EMD method, which are utilized as input variable in PSVM. The analyzed results proclaim the effectiveness of the proposed approach to identify the healthy condition from imbalance faults in WTG. The presented work renders initial results that are helpful for online condition monitoring and health assessment of WTG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.