Abstract

Proximal deposits of the 3.3 Ma Grants Ridge Tuff, part of a 5-km 3 topaz rhyolite sequence, are composed of basal pyroclastic flow, surge, and fallout deposits, a thick central ignimbrite, and upper surge and fallout deposits. Large lithic blocks (≤2 m) of underlying sedimentary and granitic bedrock that are present in lower pyroclastic flow and fallout deposits indicate that the eruptive sequence began with explosive, conduit-excavating eruptions. The massive, nonwelded central ignimbrite displays evidence for postemplacement deformation. The upper pyroclastic surge deposits are dominated by fine ash, some beds containing accretionary lapilli, soft-sediment deformation features, and mud-coated lithic lapilli, indicating an explosive, hydromagmatic component to these later eruptions. The upper fall and surge deposits are overlain by fluvially reworked volcaniclastic deposits that truncate the primary section with a relatively planar surface. The proximal, upper pyroclastic surge and Plinian fall deposits are preserved only in small grabens (5–8 m deep and wide), where they subsided into the ignimbrite and were protected from reworking. The pyroclastic surge and fall deposits within the grabens are offset by numerous small normal faults. The offset on some faults decreases upward through the section, indicating that the faulting process may have been syn-eruptive. Several graben-bounding faults extend downward into the ignimbrite, but the uppermost, fluvially reworked tephra layers are not cut by these faults. The faulting mechanism may have been related to settling and compaction of the 60 m thick, valley-filling ignimbrite along the axis of the paleovalley. Draping surge contacts against the graben faults and brittle and soft-style disruption of the upper pyroclastic surge beds indicate that subsidence was ongoing during the emplacement of the upper eruptive sequence. Seismicity accompanying the late-stage hydromagmatic explosions may have contributed to the abrupt settling and compaction of the ignimbrite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call