Abstract

Single-stranded guanine-rich RNA sequences have a propensity to fold into compact G-quadruplexes (RG4s). The conformational transitions of these molecules provide an important way to regulate their biological functions. Here, we examined the stability and conformation of an RG4-forming sequence identified near the end of human telomerase RNA. We found that a proximal single-stranded (ss) RNA significantly impairs RG4 stability at physiological K+ concentrations, resulting in a reduced RG4 rupture force of ∼ 24.4 pN and easier accessibility of the G-rich sequence. The destabilizing effect requires a minimum of six nucleotides of ssRNA and is effective at either end of RG4. Remarkably, this RG4-forming sequence, under the influence of such a proximal ssRNA, exhibits interconversions between at least three less stable RG4 conformers that might represent potential intermediates along its folding/unfolding pathway. This work provides insights into the stability and folding dynamics of RG4 that are essential for understanding its biological functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call