Abstract

To determine whether proximal sesamoid bone (PSB) microdamage and fracture toughness differ between Thoroughbred racehorses sustaining PSB fracture and controls. Cadaveric case-control. Twenty-four Thoroughbred racehorses (n=12 PSB fracture, n=12 control). Proximal sesamoid bones were dissected, and gross pathological changes and morphological measurements were documented. High-speed exercise history data were evaluated. Microdamage was assessed in fracture, fracture-contralateral limb (FXCL) and control PSBs using whole bone lead uranyl acetate (LUA) staining with micro-CT imaging or basic fuchsin histological analysis. Fracture toughness mechanical testing was carried out in 3-point-bending of microbeams created from PSB flexor cortices. Data were analyzed using ordinal logistic and linear regression models. Microdamage was detected most commonly in the articular subchondral region of PSBs via LUA micro-CT and basic fuchsin histology. There were no differences in microdamage between FXCL and control PSBs. Fracture toughness values were similar for FXCL (1.31 MPa√m) and control (1.35 MPa√m) PSBs. Exercise histories were similar except that horses sustaining fracture spent a greater percentage of their careers in rest weeks. Microdamage was detected in the articular region of PSBs but was not greater in horses sustaining catastrophic PSB fracture. Fracture toughness of PSB flexor cortices did not differ between FXCL and control PSBs. Although uncommon, microdamage is localized to the articular region of Thoroughbred racehorse PSBs. Catastrophic PSB failure is not associated with lower PSB flexor cortex fracture toughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call