Abstract

As part of identifying and characterizing physiological responses and adaptations by insects, it is paramount to develop non-destructive techniques to monitor individual insects over time. Such techniques can be used to optimize the timing of when in-depth (i.e., destructive sampling of insect tissue) physiological or molecular analyses should be deployed. In this article, we present evidence that hyperspectral proximal remote sensing can be used effectively in studies of host responses to parasitism. We present time series body reflectance data acquired from individual soybean loopers (Chrysodeixis includens) without parasitism (control) or parasitized by one of two species of parasitic wasps with markedly different life histories: Microplitis demolitor, a solitary larval koinobiont endoparasitoid and Copidosoma floridanum, a polyembryonic (gregarious) egg-larval koinobiont endoparasitoid. Despite considerable temporal variation in reflectance data 1–9 days post-parasitism, the two parasitoids caused uniquely different host body reflectance responses. Based on reflectance data acquired 3–5 days post-parasitism, all three treatments (control larvae, and those parasitized by either M. demolitor or C. floridanum) could be classified with >85 accuracy. We suggest that hyperspectral proximal imaging technologies represent an important frontier in insect physiology, as they are non-invasive and can be used to account for important time scale factors, such as: minutes of exposure or acclimation to abiotic factors, circadian rhythms, and seasonal effects. Although this study is based on data from a host-parasitoid system, results may be of broad relevance to insect physiologists. Described approaches provide a non-invasive and rapid method that can provide insights into when to destructively sample tissue for more detailed mechanistic studies of physiological responses to stressors and environmental conditions.

Highlights

  • In studies of basic insect physiology and evolutionary adaptations to environmental conditions and stressors, there is growing appreciation for the complex dynamics of physiological responses across different time scales

  • Due to the distinct differences in life histories of M. demolitor and C. floridanum, the key questions addressed in this study were: (1) when is the earliest time point post-parasitism that parasitized larvae can be accurately distinguished from non-parasitized larvae, and (2) do reflectance data acquired from the body of host larvae enable accurate differentiation of parasitism by a solitary versus gregarious koinobiont endoparasitoid? We discuss the resultderived answers to these questions in the context of existing molecular and physiological knowledge about the host’s immune responses

  • Reflectance data acquired from the body of individual soybean loopers were used to address the following two questions: (1) when is the earliest time point post-parasitism that parasitized larvae can be accurately distinguished from non-parasitized larvae, and (2) do reflectance data acquired from the body of host larvae enable accurate differentiation of parasitism by a solitary or a gregarious koinobiont endoparasitoid? The results from this study demonstrated that a solitary (M. demolitor) and a gregarious koinobiont (C. floridanum) parasitoid have opposite effects on host body reflectance in spectral bands from 408 to 450 nm and in spectral bands near 680 nm

Read more

Summary

Introduction

In studies of basic insect physiology and evolutionary adaptations to environmental conditions and stressors, there is growing appreciation for the complex dynamics of physiological responses across different time scales. Parasitoids are free-living insects as adults whose offspring develop by feeding in or on the body of another arthropod Most parasitoids complete their immature development by feeding on a single host and most hosts die as a consequence of being parasitized. For this reason, a number of parasitoids are used as biological control agents for management of important insect pest species. Microplitis demolitor Wilkinson (Hymenoptera: Braconidae) is a solitary larval koinobiont endoparasitoid that dramatically reduces host growth due to factors including venom, a polydnavirus and teratocytes this species introduces into its host (Strand, 2014; Strand and Burke, 2014). Development of non-destructive methods for distinguishing parasitized from non-parasitized larval hosts, and diagnosis of the parasitoid species, could be highly useful in both basic studies of parasitoid biology and pest management where estimates of parasitism rates can affect control decisions

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call