Abstract

Advanced deep reinforcement learning shows promise as an approach to addressing continuous control tasks, especially in mixed-autonomy traffic. In this study, we present a deep reinforcement-learning-based model that considers the effectiveness of leading autonomous vehicles in mixed-autonomy traffic at a non-signalized intersection. This model integrates the Flow framework, the simulation of urban mobility simulator, and a reinforcement learning library. We also propose a set of proximal policy optimization hyperparameters to obtain reliable simulation performance. First, the leading autonomous vehicles at the non-signalized intersection are considered with varying autonomous vehicle penetration rates that range from 10% to 100% in 10% increments. Second, the proximal policy optimization hyperparameters are input into the multiple perceptron algorithm for the leading autonomous vehicle experiment. Finally, the superiority of the proposed model is evaluated using all human-driven vehicle and leading human-driven vehicle experiments. We demonstrate that full-autonomy traffic can improve the average speed and delay time by 1.38 times and 2.55 times, respectively, compared with all human-driven vehicle experiments. Our proposed method generates more positive effects when the autonomous vehicle penetration rate increases. Additionally, the leading autonomous vehicle experiment can be used to dissipate the stop-and-go waves at a non-signalized intersection.

Highlights

  • Traffic congestion leads to a lot of wasted time and slow traffic, and it is one of the main challenges that traffic management agencies and traffic participants have to overcome

  • We demonstrate that full-autonomy traffic can improve the average speed and delay time by 1.38 times and 2.55 times, respectively, compared with all human-driven vehicle experiments

  • The policy optimization (PPO) with an adaptive KL penalty algorithm controls the distance between the updated policy and the old policy in order to avoid noise during a gradient update

Read more

Summary

Introduction

Traffic congestion leads to a lot of wasted time and slow traffic, and it is one of the main challenges that traffic management agencies and traffic participants have to overcome. According to a national motor vehicle crash survey of the United States, 47% of collisions in 2015 happened at intersections [1]. Automated vehicles (AVs) have recently shown the potential to prevent human errors and improve the quality of a traffic service, with full autonomy expected as soon as 2050 [2]. This means of transportation can save the economy of the United States approximately $450 billion each year [3]. The intelligent transport system (ITS) domain was developed to provide a smoother, smarter, and safer journey to traffic participants. The early applications of ITS, such as traffic control in

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.