Abstract

In this paper, we consider minimization problems with constraints. We show that, if the set of constraints is a Finslerian manifold of non-positive flag curvature, and the objective function is differentiable and satisfies the Kurdyka-Lojasiewicz property, then the proximal point method can be naturally extended to solve this class of problems. We prove that the sequence generated by our method is well defined and converges to a critical point. We show how tools of Finslerian geometry, specifically non-symmetrical metrics, can be used to solve non-convex constrained problems in Euclidean spaces. As an application, we give one result regarding decision-making speed and costs related to change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.