Abstract

A general approach to analyze convergence of the proximal-like methods for variational inequalities with set-valued maximal monotone operators is developed. It is oriented to methods coupling successive approximation of the variational inequality with the proximal point algorithm as well as to related methods using regularization on a subspace and weak regularization. This approach also covers so-called multistep regularization methods, in which the number of proximal iterations in the approximated problems is controlled by a criterion characterizing these iterations as to be effective. The conditions on convergence require control of the exactness of the approximation only in a certain region of the original space. Conditions ensuring linear convergence of the methods are established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.