Abstract

Composite optimization offers a powerful modeling tool for a variety of applications and is often numerically solved by means of proximal gradient methods. In this paper, we consider fully nonconvex composite problems under only local Lipschitz gradient continuity for the smooth part of the objective function. We investigate an adaptive scheme for PANOC-type methods (Stella et al. in Proceedings of the IEEE 56th CDC, 2017), namely accelerated linesearch algorithms requiring only the simple oracle of proximal gradient. While including the classical proximal gradient method, our theoretical results cover a broader class of algorithms and provide convergence guarantees for accelerated methods with possibly inexact computation of the proximal mapping. These findings have also significant practical impact, as they widen scope and performance of existing, and possibly future, general purpose optimization software that invoke PANOC as inner solver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.