Abstract
We propose a novel optimization-based decoding algorithm for LDPC-coded massive MIMO channels. The proposed decoding algorithm is based on a proximal gradient method for solving an approximate maximum a posteriori (MAP) decoding problem. The key idea is the use of a code-constraint polynomial penalizing a vector far from a codeword as a regularizer in the approximate MAP objective function. The code proximal operator is naturally derived from code-constraint polynomials. The proposed algorithm, called proximal decoding, can be described by a simple recursion consisting of the gradient descent step for a negative log-likelihood function and the code proximal operation. Several numerical experiments show that the proposed algorithm outperforms known massive MIMO detection algorithms, such as an MMSE detector with belief propagation decoding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.