Abstract

Malnutrition affects large section of population worldwide. VitaminA and protein deficiencies have emerged as the major global health-issue. Traditional shrunken2 (sh2)-based sweet corn is deficient in provitaminA (proA), lysine and tryptophan. Natural variant of β-carotene hydroxylase1 (crtRB1) and opaque2 (o2) enhances proA, lysine and tryptophan in maize. So far, no sweet corn hybrid rich in these nutrients has been released elsewhere. Development of biofortified sweet corn hybrids would help in providing the balanced nutrition. We targeted three sh2-based sweet corn inbreds (SWT-19, SWT-20 and SWT-21) for introgression of mutant crtRB1 and o2 genes using molecular breeding. The gene-based 3'TE-InDel and simple sequence repeat(SSR) (umc1066) markers specific to crtRB1 and o2, respectively were utilized in foreground selection in BC1F1, BC2F1 and BC2F2. Segregation distortion was observed for crtRB1 and o2 genes in majority of populations. Background selection using 91-100 SSRs revealed recovery of recurrent parent genome (RPG) up to 96%. The introgressed progenies possessed significantly higher proA (13.56µg/g) as compared to the original versions (proA: 2.70µg/g). Further, the introgressed progenies had accumulated moderately higher level of lysine (0.336%) and tryptophan (0.082%) over original versions (lysine: 0.154% and tryptophan: 0.038%). Kernel sweetness among introgressed progenies (17.3%) was comparable to original sweet corn (17.4%). The introgressed inbreds exhibited higher resemblance with their recurrent parents for yield and morphological characters. These newly developed biofortified sweet corn genotypes hold immense promise to alleviate malnutrition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call