Abstract

A common tool for proving the termination of programs is the well-founded set, a set ordered in such a way as to admit no infinite descending sequences. The basic approach is to find a termination function that maps the values of the program variables into some well-founded set, such that the value of the termination function is continually reduced throughout the computation. All too often, the termination functions required are difficult to find and are of a complexity out of proportion to the program under consideration. However, by providing more sophisticated well-founded sets, the corresponding termination functions can be simplified. Given a well-founded set S, we consider multisets over S, "sets" that admit multiple occurrences of elements taken from S. We define an ordering on all finite multisets over S that is induced by the given ordering on S. This multiset ordering is shown to be well-founded. The value of the multiset ordering is that it permits the use of relatively simple and intuitive termination functions in otherwise difficult termination proofs. In particular, we apply the multiset ordering to prove the termination of production systems, programs defined in terms of sets of rewriting rules. An extended version of this paper appeared as Memo AIM-310, Stanford Artificial Intelligence Laboratory, Stanford, California.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.