Abstract
We describe three case studies illustrating the use of ACL2s to prove the correctness of optimized reactive systems using skipping refinement. Reasoning about reactive systems using refinement involves defining an abstract, high-level specification system and a concrete, low-level system. Next, one shows that the behaviors of the implementation system are allowed by the specification system. Skipping refinement allows us to reason about implementation systems that can "skip" specification states due to optimizations that allow the implementation system to take several specification steps at once. Skipping refinement also allows implementation systems to, i.e., to take several steps before completing a specification step. We show how ACL2s can be used to prove skipping refinement theorems by modeling and proving the correctness of three systems: a JVM-inspired stack machine, a simple memory controller, and a scalar to vector compiler transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.